TEST LABORATORY The test laboratory is accredited in compliance with DIN EN ISO/IEC 17025 by the Deutsche Akkreditierungsstelle GmbH. The accreditation is also valid for products of Regulation EU 2016/425. Test methods not included in the scope of accreditation are marked by a *. # TEST REPORT Order no. STFI: P2024 0769 Order no. applicant: none Report date: Testing officer: 10th April 2024 Reinhardt / Schröter Applicant: Zimmer+Rhode GmbH Mrs. Oda Nimmer Zimmersmühlenweg 14-18 61440 Oberursel 5th April 2024 5th April 2024 order receipt on: sample receipt on: 4th April 2024 www.stfi.de ## Material to analyse: | signed by client | | code for order processing | |------------------|--------------------------------|---------------------------| | Sample: 1290 | Material: 96% PES CS 4% PES FR | P0769_24_1 | Sampling was carried out by the client; the testing laboratory has no information on this. ### **Analysis content:** - (1) Remission and transmission in the visible light range in accordance with DIN EN 14500: 2021-09 - (2) Remission and transmission in the global radiation range in accordance with DIN EN 14500: 2021-09 - (3)* Calculation of the total energy permeability degree g_{tot} of a window system with sun protective material, following DIN EN ISO 52022-1: 2018-01 and approximate calculation of the reduce factor F_c - * Standards for calculation and assessment are not allowed for accreditation #### Conditions: Optical tests | test parameter | symbol | range of radiation | | |------------------------------|--------------------|-------------------------------------|--| | light transmission degree | τ _{v,n-h} | (380 – 780) nm (standard light D65) | | | light remission degree | ρ _{v,n-h} | (380 – 780) nm (standard light D65) | | | light absorption coefficient | α_{v} | (380 – 780) nm | | | UV - transmission degree | $\tau_{\sf UV}$ | (280 – 380) nm | | | solar transmission degree | τ _{e,n-h} | (300 – 2500) nm | | | solar remission degree | ρe,n-h | (300 – 2500) nm | | | solar absorption coefficient | α_{e} | (300 – 2500) nm | | Equipment: UV-VIS-NIR double beam spectrophotometer, company PERKIN - ELMER Corp., USA; 150 mm integrating sphere; irradiation perpendicular to the integrating sphere opening; 8° slope of the sample area to the light incidence axis for remission measurements For each material sample of the client three samples in the format (55×75) mm are taken, one in the machine direction, one in the cross machine direction and one diagonally. The irradiation takes place, if not otherwise noted, on the material side which is faced to the solar radiation in usage (marked by client). The results are mean values of three measurements. #### Test results: # (1) Light range **UV-range** | Code | light
transmission
degree | light
remission
degree | light
absorption
coefficient | UV-transmission degree ¹⁾ | |----------|---------------------------------|------------------------------|------------------------------------|--------------------------------------| | P0769_24 | τ _{v,n-h} | $\rho_{\text{v,n-h}}$ | α_{v} | τμν | | 1 | 0,284 | 0,681 | 0,035 | 0,158 | ¹⁾ For textile products that have fluorescence effects (e.g. due to the finishing with optical brighteners) the measured result of the UV-transmission degree using the measurement method described above can be incorrect (increased). # (2) Global radiation range | Code | solar transmission degree | solar remission
degree | solar absorption coefficient | | |----------|---------------------------|---------------------------|------------------------------|--| | P0769_24 | τ _{e,n-h} | ρe,n-h | | | | 1 | 0,277 | 0,666 | 0,057 | | # (3)* Total energy permeability degree g_{tot} and reduce factor F_{c} Usage as internal sun protection material | | Single glazing | | Double glazing with air filling | | Double glazing with argon filling and low-e coating | | |----------|----------------|-----------------|---|------|---|----------------| | Code | | W/(m²K)
0,85 | $U_g = 2.9 \text{ W/(m}^2\text{K)}$
g = 0.76 | | $U_g = 1.2 \text{ W/(m}^2\text{K)}$
g = 0.59 | | | P0769_24 | g tot | Fc | G tot | Fc | gtot | F _c | | 1 | 0,36 | 0,42 | 0,37 | 0,49 | 0,36 | 0,60 | | | Solar controlled double glazing with argon filling and low-e coating $U_g = 1,1 \ W/(m^2K)$ $g = 0,32$ | | Triple glazing with argon filling and low-e coating | | | |----------|--|----------------|---|----------------|--| | Code | | | $U_g = 0.8 \text{ W/(m}^2\text{K)}$
g = 0.55 | | | | P0769_24 | 9 tot | F _c | gtot | F _c | | | 1 | 0,25 0,78 | | 0,35 | 0,63 | | ### Mounting assumptions: - sun protective material inside and closed - aerated air interspace to the glazing The mathematical model in DIN EN ISO 52022-1: 2018-01 (simplified method) for calculation of g_{tot} is appropriated to a coarse compare of sun protection materials. The model is only valid for the following boundary requirements: - $0 \le \tau_{e,n-h} \le 0,5$ - $0,1 \le \rho_{e,n-h} \le 0,8$ If the above mentioned boundary requirements are not fulfilled, the calculation of F_c from g_{tot} and g is not guaranteed either. The calculation is recommended in accordance with DIN EN ISO 52022-3: 2018-01 (detailed calculation method). There for it is necessary to measure the reflection of the sample side which is not directly exposed by the sun radiation and the sample thickness at least in addition to the data of this order. In case of known conditions to be used at a building it is unalterable. Further information on the test procedures or results are available at the accredited testing laboratory and can be provided to the client upon request. The test results refer to the delivered specimen. This test report should not be published in parts. The testing period is defined as timeframe between receipt of the sample and issue date of test report. All materials received in connection with this order will be stored for a maximum period of six months unless agreed otherwise. Exempted from this practice are materials which will not be stored due to technical or safety-related reasons. Dipl.-Ing. Marian Hierhammer head of test department Stfi geprüft Patrick Reinhardt, M.Sc. field responsible collaborator